پـشـتـیـبانی تلفنی

81 16 072 0991

کتاب Basic One- and Two-Dimensional NMR Spectroscopy انگلیسی

59,000 تومان

دانلود pdf کتاب Basic One- and Two-Dimensional NMR Spectroscopy – Horst Friebolin

زبان: انگلیسی

نسخه: ویرایش چهارم

نوع فایل : pdf – قابل جستجو

تعداد صفحات: 435 صفحه

تعداد فصل ها: 14 فصل

نحوه دانلود: پس از خرید به نسخه اصلی کتاب با فرمت PDF دسترسی خواهید داشت.

برای دانلود ترجمه فارسی این کتاب اینجا کلیک کنید.

 

دانلود پیش نمایش صفحات ابتدایی کتاب

 

Fourth, Completely Revised and Updated Edition

Translated by: Jack K. Becconsall

Prof. Dr. Horst Friebolin
Organisch-Chemisches Institut der Universitat
Im Neuenheimer Feld 270
69120 Heidelberg
Germany

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors , and publisher do not warrant the information contained in these books , including this book, to be free of e rrors . Readers are advised to keep in mind that stateme nts, data, illustrations, procedural detail s or other items may inadvertently be inaccurate.

 

Foreword

Over the past decade, many, if not most, graduate students and postdoctoral fellows in organic chemistry seem to have come to regard nuclear magnetic resonance spectroscopy as a “black box” . Something in which you insert an unknown and out comes the data to establish structural formula. Perhaps this trend in the way NMR is perceived is really not surprising, because how manufacturers have tried to package their instruments to be ” user friendly” and because of the enormous growth in the sophistication of what NMR instrumentation can do.

Those of us who were fortunate to be in on the beginning of the applications of NMR to organic chemistry in the mid- 1950’s were able to more or less “grow” with the field and come into the modern arena of multipulse and multidimensional NMR with substantial experience with NMR fundamentals. Those who now wish to start using NMR in their research surely must feel, at least somewhat, overwhelmed by the enormity and sophistication of the currently available knowledge of NMR and must have further concerns at being told by the specialists, that fantastic further, even more sophisticated , developments are in the offing. A “black box” that would function with no need to worry about its inner workings must then be an attractive proposition. The problem is that to properly use modern NMR requires a lot of rather specialized knowledge. The effects of couplings , of exchange, of relaxation times, of low sensitivity, of solvent and so on, make selection of instrumental parameters for taking spectra far from routine. Serious errors or inefficient use of very expensive instrumentation come with ease.

The best way to learn NMR spectroscopy is by doing it , but textbooks, guidebooks anet:J:eference books are vitally necessary. Having written two b oks about NMR basics, with a third in progress , I know mething about the difficulties of making available “what e ery NMR user should know” . And it is to this objective th Professor Friebolin has made a wonderfully broad coRtfi ution. This book will be of interest and help to both those needing to learn and those needing a reference book to refresh their memories, or extend their capabilities in NMR spectroscopy. It is not a book intended to replace the treatises of Abragam or Bodenhausen, Ernst and Wokaun.

However, even though it does start at a useful elementary level , it goes rather deeply into the difficult basics of multipulse and multidimensional spectroscopy. The result is material that almost every reader will find of value.

The beginner can start with the elements of chemical shifts and couplings and later proceed to more difficult matters. The expert can find ways of explaining what he is doing , without necessarily resorting to density matrices; or else , in impatience with an eager, but dull , learner, can say “Go read about it in Friebolin , then we can talk” .

Much is covered in this book in meaningful detail. There is a plethora of structural parameters for proton and carbon NMR and many examples of how they can be used . Best of all , though , are very clear, meticulously written descriptions of INEPT, DEPT, INADEQUATE, COSY, NOESY, and the like , in one- and two-dimensional NMR spectroscopy. Experts may prefer mathematical equations for compactness and “it is easy to see”. I prefer descriptions such as those used by Professor Friebolin , which will indeed require careful reading , rereading and drawing and redrawing ones own vector diagrams, but can lead to a real level of understanding. Such understanding in its turn can only result in improved ability to take and interpret NMR spectra.

1-The Physical Basis of NMR Spectroscopy

  • 1-1 Introduction

In 1946 two research groups, that of F. Bloch, W.W. Hansen and M. E. Packard and that of E. M. Purcell, H. C. Torrey and R.V. Pound, independently observed nuclear magnetic reso­ nance signals for the first time. Bloch and Purcell were jointly awarded the Nobel Prize for Physics in 1952 for their discovery. Since then nuclear magnetic resonance (NMR) spectroscopy has developed into an indispensable tool for chemists, bio­ chemists, physicists, and more recently medical scientists.

During the first three decades of NMR spectroscopy all measure­ ments relied on one-dimensional modes of observation; this gives spectra having just one frequency axis, the second axis being used to display the signal intensities. The development of two-dimensional NMR experiments during the 1970s heralded the start of a new era in NMR spectroscopy. Spectra recorded by these methods have two frequency axes, the intensities being displayed in the third dimension. More recently it has even become possible to perform experiments with three or more dimensions, although these are still far from being routine techniques.

The importance of the position that NMR spec­ troscopy now occupies is illustrated by the awards of the Nobel Prize for Chemistry in 1991 to R.R. Ernst and in 2002 to K. Wi.ithrich, and of the Nobel Prize for Medicine in 2003 to P. Lauterbur and P. Mansfield for their pioneering research on NMR methods in chemistry, biochemistry and medicine. The new techniques that have emerged during the last few years show that developments in NMR spectroscopy are still far from coming to an end.

This book aims to explain why it is that, for chemists espe­ cially, NMR spectroscopy has become {possibly) the most important of aJJ spectroscopic methods.

The main field of application of NMR spectroscopy is that of determining the structures of molecules. The necessary infor­ mation for this is obtained by measuring, analyzing and inter­ preting high-resolution NMR spectra recorded on liquids of low viscosity (or in some cases on solids by using special tech­ niques and instruments that have been developed in the last few years). In this book we will confine our attention almost exclusively to high-resolution NMR spectroscopy on liquids, since solid-state measurements involve quite different experimental techniques and the interpretation often brings in extra compli­ cations.

The nuclides that mainly interest us are protons (1H) and car­ bon-13 (‘3C), as their resonances are the most important ones for determining the structures of organic molecules. However, in the following chapters we shall meet also examples of NMR spectroscopy of other nuclides whose NMR signals can now be observed without difficulty.

In order to understand NMR spectroscopy we first need to learn how nuclei which have a nuclear angular momentum P and a magnetic momentµ behave in a static magnetic field. Following this we shall discuss the basic NMR experiment, the different methods of observation, and the spectra] parameters.

 

Contents

1

The Physical Basis of NMR Spectroscopy

1

1.1

ntroduction

1

1.2

Nuclear Angular Momentum and Magnetic Moment

2

1.3

Nuclei in a Static Magnetic Field

4

1.3.1

Directional Quantization

4

1.3.2

Energy of the Nuclei in the Magnetic Field

4

1.3.3

Populations of the Energy Levels

6

1.3.4

Macroscopic Magnetization ………….. .

6

1.4

Basic Principles of the NMR Experiment …. .

7

1.4.1

ThReesonance Condition …………… .

7

1.4.2

Basic Principle of the NMR Measurement …            .

8

1.5

The Pulsed NMR Method …………… .

9

1.5.l

The Pulse ………………………. .

9

1.5.2

The Pulse Angle ………………….. .

10

1.5.3

Relaxation ……………………… .

13

1.5.4

The Time and Frequency Domains: the Fourier Transformation

14

1.5.5

Spectrum Accumulation …………….. .

16

1.5.6

The  Pulsed  NM R  Spectrometer  …………

18

1.6

Spectral Parameters: a Brief Survey .……. .

22

1.6.l

The Chemical Shift. ……………….. .

22

1.6.1.1

Nuclear Shielding …………………. .

22

1.6.1.2

Reference Compounds and the a-Scale …… .

24

1.6.2

Spin-Spin Coupling………………… .

26

1.6.2.1

The  Indirect  Spin-Spin  Coupling …………

26

1.6.2.2

Coupling to One Neighboring Nucleus (AX Spin System)

27

1.6.2.3

Coupling to Two Equivalent Neighboring Nuclei (AX2 Spin System)

29

1.6.2.4

Coupling to Three or More Equivalent Neighboring Nuclei (AXn Spin System)

30

1.6.2.5

Multiplicity Rules …………………. .

30

l.6.2.6

Couplings between Three Non-equivalent Nuclei (AMX Spin System)

31

1.6.2.7

Couplings between Equivalent Nuclei (A., Spin Systems)

32

1.6.2.8

The  Order  of  a  Spectrum   ……………..

33

1.6.2.9

Couplings between Protons and other Nuclei: 13C Satellite Spectra

33

1.6.3

The Intensities of the Resonance Signals

34

1.6.3.l

1H Signal Intensities

34

1.6.3.2

1·1cs1·gna1·1ntens1.t.1es

35

1.6.4

Summary

37

1.7

“Other” Nuclides

38

1.7.I

Nuclides with Spin/= 1/2

39

1.7.2

Nuclides with Spin 1 > 112

40

1.8

Bibliography for Chapter 1

41

2

The Chemical Shift

43

2.1

ntroduction

43

2. 1.l

Influence of the Charge Density on the Shielding

44

2.12

Effects of Neighboring Groups

47

2.1.2.1

Magnetic Anisotropy of Neighboring Groups

47

2. 1.2 .2

Ring Current Effects

49

2. 1.2 .3

Electric Field Effects

51

2. 1.2.4

Intermolecular Inte ractions – Hydrogen Bonding and Solvent Effects

51

2.1.2.5

Isotope Effects

51

2..1.3

Summary

52

2.2

1 H Chemical Shifts of Organic Compounds

53

2.2.1

Alkanes and Cycloalkanes

54

2.2.2

Alkenes

56

2.2.3

Arenes

56

2.2.4

Alkynes

57

2.2.5

Aldehydes

58

2.2.6

OH, SH , NH

59

2.3

13C Chemical Shifts of Organic Compounds

60

2.3.l

Alka nes and Cycloalkanes

61

2.3.2

Alkenes

63

2.3.3

Arenes

64

2.3.4

Alkynes

66

2.3.5

Allenes

66

2.3.6

Carbonyl and Carboxy Compounds

66

2.3.6.1

Aldehydes and Ketones

67

2.3.6.2

Carboxylic Acids and Derivati ves

68

2.4

Relationships between the Spectrum and the Molecular Structure

70

2.4. 1

Equivalence, Symmetry a nd Chi ra li ty

70

2.4 .2

Homotopic, Enantiotopic and Diaste reotopic Groups

74

2.4.3

Summary

77

2.5

Chemical Shifts of “Other” Nuclides

78

2.6

Bibliography for Chapter 2

83

3

Indirect Spin-Spin Coupling

85

3.1

Introduction

85

3.2

H,H Coupling Constants and Chemical Structure

87

3.2. l

Geminal Couplings 2./ (H,H)

87

3.2.1.1

Dependence on Bond Angle

87

3.2. l.2

Substituent Effects

88

3.2.l.3

Effects of Neighboring iT-Electrons

88

3.2.2

Yicinal Couplings 3./(H,H)

89

3.2.2.1

Dependence  on  the  Dihedral Angle

90

3.2.2.2

Substituent Effects

93

3.2.3

H,H Couplings in Aromatic Compounds

95

3.2.4

Long-range Couplings

96

3.3

C,H Coupling Constants and Chemical Structure

97

3.3.1

C,H Couplings through One Bond 1J(C,H)

97

3.3.l.l

Dependence on the s-Fraction

97

3.3.1.2

Substituent Effects

97

3.3.2

C,H Couplings through Two or More Bonds

98

3.3.2.I

Geminal Couplings (i.e. 21 (C,H) in H-C- 13C)

98

3.3.2.2

Yicinal Couplings (i.e. 3J(C,H) in H-C-C-13C)

99

3.3.2.3

Long-range Couplings 3+ 11J(C.H)

99

3.3.3

C,H Couplings in Benzene Derivatives

99

3.4

C,C Coupling Constants and Chemical Structure

100

3.5

Correlations between C,H and H,H Coupling  Constants

101

3.6

Coupling Mechanisms

102

3.6.1

The Electron-Nuclear Interaction

102

3.6.2

H,D Couplings

104

3.6.3

Relationship between the Coupling and the Lifetime of a Spin State

105

3.6.4

Couplings   through  Space    ……………..

106

3.7

Couplings of OtherNuclides (Heteronuclear Couplings)

106

3.8

Bibliography for Chapter 3

109

4

Spectrum Analysis and Calculations

111

4.1

Introduction

111

4.2

Nomenclature

113

4.2.l

Systematic Notation for Spin Systems

113

4.2.2

Chemical and  Magnetic  Equivalence

114

4.3

Two-Spin Systems

116

4.3.1

The AX Spin System

116

4.3.2

The AB Spin System

118

4.4

Three-Spin Systems

120

4.4.1

The AX2, AK2, AB2 and A3 Spin Systems

120

4.4.2

The  AMX and ABX Spin Systems

121

4.5

Four-Spin     Systems

123

4.5.1

A2X2 and A2B2 Spin Systems

123

4.5.2

The AA’XX’ and AA’BB’ Spin Systems

124

4.6

Spectrum Simulation and Iteration

125

4.7

Analysis of 13C NMR Spectra

126

4.8

Bibliography for Chapter 4 .………….. .

127

5

Double Resonance Experiments ……. .

129

5.1

Introduction ………………………

129

5.2

Spin Decoupling in 1H NMR Spectroscopy ... .

130

5.2.l

Simplification of Spectra by  Selective  Spin  Decoupling   …………..

130

5.2.2

Suppression of  a  Solvent  Signal   …………

132

5.3

Spin Decoupling in 13C NMR Spectroscopy .. .

133

5.3.1

1H  Broad-band   Decoupling   ……………

133

5.3.2

The  Gated Decoupling Experiment  ………

135

5.3.3

1H Off-Resonance Decoupling ………… .

136

5.3.4

Selective Decoupling in 13C NMR Spectroscopy

137

5.4

Bibliograph)1 for Chapter 5 .………….. .

138

6

Assignment of 1H and 13C Signals …….

139

6.1

Introduction …………………….. .

139

6.2

1H NMR Spectroscopy ……………… .

140

6.2.1

Defining the Problem ………………. .

140

6.2.2

Empirical Correlations for Predicting Chemical Shifts

141

6.2.2.1

Alkanes (Shoolery’s Rule) …………… .

141

6.2.2.2

Alkenes ……………………….. .

142

6.2.2.3

Benzene Derivatives……………….. .

143

6.2.3

Decoupling   Experiments     ……………..

145

6.2.4

Effects of Solvent and Temperature …….. .

145

6.2.5

Altering the Chemical Structure of the Sample

146

6.3

13C NMR Spectroscopy

147

6.3.1

Defining the Problem ………………. .

147

6.3.2

Empirical Correlations for Predicting Approximate Chemical Shifts

148

6.3.2.l

Alkanes ……………………….. .

148

6.3.2.2

Alkenes ……………………….. .

151

6.3.2.3

Benzene   Derivatives…………………

153

6.3.3

Decoupling Experiments ……………. .

154

6.3.4

T1 Measurements …………………. .

154

6.3.5

Solvent and Temperature Effects and Shift     Reagents

154

6.3.6

Chemical Changes to the Sample ………. .

154

6.4

Computer-aided Assignment of 13C NMR Spectra

156

6.4.1

Searching for Identical or Related Compounds

156

6.4.2

Spectrum Prediction . . . . . . . . . . . . . . . . . . . . .

151

6.5

Bibliography for Chapter 6. . . . . . . . . . . . . . . .

159

7

Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . .

16l

7.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .

I6 l

7.2

Spin-Lattice Relaxation of 13C Nuclei (T1).

162

7.2.1

Relaxation Mechanisms . . . . . . . . . . . . . . . . . .

162

7.2.2

Experimental Determination of T1; the Inversion Recovery Experiment

164

7.2.3

Relationships between T, and Chemical Structure

168

7.2.3.1

Influence of Protons in CH, CH2 and CH3 Groups

168

7.2.3.2

Influence of Molecular Size . . . . . . . . . . . . . . .

169

7.2.3.3

Segmental Mobilities . . . . . . . . . . . . . . . . . . . .

170

7.2.3.4

Anisotropy of the Molecular Mobility. . . . . . . .

170

7.2.4

Suppression of the Water Signal . . . . . . . . . . . .

171

7.3

Spin-Spin Relaxation (T2) . . . . . . . . . . . . . . . .

171

7.3.1

Relaxation Mechanisms . . . . . . . . . . . . . . . . . .

17 I

7.3.2

Experimental Determination of T2; the Spin-Echo Experiment

173

7.3.3

Line-widths of NMR Signals. . . . . . . . . . . . . . .

177

7.4

Bibliography for Chapter 7. . . . . . . . . . . . . . . .

178

8

One-Dimensional NMR Experiments using Complex Pulse Sequences . . . . . . . .

I 8I

8.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .

18J

8.2

Basic Techniques Using Pulse Sequences and Pulsed Field Gradients

182

8.2.1

The Effect of the Pulse on the Longitudinal Magnetization (Mz)

183

8.2.2

The Effect of the Pulse on the Transverse Magnetization Components(Mx, My•)

184

8.2.3

The Effect of Pulsed Field Gradients on the Transverse Magnetization

187

8.3

The ]-Modulated Spin-Echo Experiment . . . . .

192

8.4

The Pulsed Gradient Spin-Echo Experiment . .

200

8.5

Signal Enhancement by Polarization Transfer. .

202

8.5.l

The SPI Experiment. . . . . . . . . . . . . . . . . . . . .

202

8.5.2

The INEPT Experiment. . . . . . . . . . . . . . . . . .

205

8.5.3

The Reverse INEPT Experiment with Proton Detection

213

8.6

The DEPT Experiment . . . . . . . . . . . . . . . . . .

218

8.7

The Selective TOCSY Experiment. . . . . . . . . .

223

8.8

The One-Dimensional INADEQUATE Experiment

225

8.9

Bibliography for Chapter 8. . . . . . . . . . . . . . . .

229

9

Two-Dimensional NMR Spectroscopy . . .

231

9.1

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . .

23 I

9.2

The Two-Dimensional NMR Experiment. . . . .

232

9.2.1

Preparation, Evolution and Mixing, Data Acquisition

232

9.2.2

Graphical Representation. . . . . . . . . . . . . . . . .

236

9.3

Two-Dimensional ./-Resolved NMR Spectroscopy

237

9.3.1

Hctcronuclear Two-Dimensional}-Resolved NMR Spectroscopy

237

9.3.2

Homonuclear Two-Dimensional}-Resolved NMR Spectroscopy

241

9.4

Two-Dimensional Correlated NMR Spectroscopy

246

9.4.1

Two-Dimensional Heteronuclear (C.H)-Correlated NMR Spectroscopy (HETCOR or CH-COSY)

247

9.4.2

Two-Dimensional Homonuclear (H,H)-Correlated NMR Spectroscopy (H,H-COSY: Long-Range COSY)

255

9.4.3

Reverse Two-Dimensional Heteronuclear (H,C)-Correlated NMR Spectroscopy (HSQC; HMQC)

263

9.4.4

The Gradient-Selected (gs-)HMBC Experiment

268

9.4.5

The TOCSY Experiment…. . . . . . . . . . . . . .

273

9.4.6

Two-Dimensional Exchange NMR Spectroscopy: The Experiments NOESY ROESY and EXSY

276

9.5

The Two-Dimensional INADEQUATE Experiment

281

9.6

Summary of Chapters 8 and 9. . . . . . . . . . . . . .

286

9.7

Bibliography for Chapter 9. . . . . . . . . . . . . . . .

287

10

The Nuclear Overhauser Effect . . . . . . . . .

289

10.l

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . .

289

10.2

Theoretical Background. . . . . . . . . . . . . . . . . .

290

10.2.l

The Two-Spin System. . . . . . . . . . . . . . . . . . . .

290

10.2.2

Enhancement Factors. . . . . . . . . . . . . . . . . . . .

293

10.2.3

Multi-Spin Systems

294

10.2.4

From the One-Dimensional to the Two-Dimensional Experiments, NOESY and ROESY

295

10.3

Experimental Aspects . . . . . . . . . . . . . . . . . . .

296

10.4

Applications. . . . . . . . . . . . . . . . . . . . . . . . . . .

298

10.5

Bibliography for Chapter 10. . . . . . . . . . . . . . .

303

11

Dynamic NMR Spectroscopy (DNMR) ..

30S

11.1

Introduction …………………….. .

305

11.2

Quantitative Calculations ……………. .

309

11.2.1

Complete Line-shape Analysis ………… .

309

1l.2.2

The Coalescence Temperature Tc and the Corresponding Rate Constant kc

311

11.2.3

Activation Parameters ……………… .

312

11.2.3.1

The Arrhenius Activation Energy £A ……. .

312

11.2.3.2

The Free Enthalpy of Activation t::,.G  ……..

313

11.2.3.3

Estimating  the  Limits  of  Error  ………….

314

11.2.4

Rate Constants in Reactions with Intermediate Stages

315

11.2.5

Intermolecular Exchange Processes . . . . . . . . .

3 16

11.3

Applications. . . . . . . . . . . . . . . . . . . . . . . . . . .

3 17

ll.3.1

Rotation about CC Single Bonds . . . . . . . . . . .

317

11.3.1.1

C(sp3)-C(sp3) Bonds. . . . . . . . . . . . . . . . . . . .

318

ll.3.1.2

C(sp2)-C(sp3) Bonds. . . . . . . . . . . . . . . . . . . .

3 I 8

11.3.1.3

C(sp2)-C(sp2) Bonds. . . . . . . . . . . . . . . . . . . .

319

11.3.2

Rotation about a Partial Double Bond . . . . . . .

319

ll.3.3

Inversion at Nitrogen and Phosphorus Atoms. .

321

11.3.4

Ring Inversion . . . . . . . . . . . . . . . . . . . . . . . . .

322

11.3.5

Valence Tautomerism. . . . . . . . . . . . . . . . . . . .

325

11.3.6

Keto-Enol Tautomerisrn. . . . . . . . . . . . . . . . . .

326

11.3.7

Intermolecular Proton Exchange . . . . . . . . . . .

327

ll.3.8

Reactions and Equilibration Processes . . . . . . .

329

11.4

Bibliography for Chapter 11. . . . . . . . . . . . . . .

332

12

Shift Reagents. . . . . . . . . . . . . . . . . . . . . . . .

335

12.1

Lanthanide Shift Reagents (LSRs) . . . . . . . . . .

335

12.1.1

Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . .

335

12.1.2

Applications and Quantitative Interpretation . .

337

12.2

Chiral Lanthanide Shift Reagents. . . . . . . . . . .

340

12.3

Chiral Solvents. . . . . . . . . . . . . . . . . . . . . . . . .

342

U.4

Bibliography for Chapter 12. . . . . . . . . . . . . . .

345

13

Macromolecules . . . . . . . . . . . . . . . . . . . . . .

347

13.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .

347

13.2

Synthetic Polymers. . . . . . . . . . . . . . . . . . . . . .

348

13.2.1

The Tacticity of Polymers. . . . . . . . . . . . . . . . .

348

13.2.2

Polymerization of Dienes . . . . . . . . . . . . . . . . .

35 I

13.2.3

Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . .

352

13.2.4

Solid-State NMR Spectroscopy of Polymers . . .

353

13.3

Biopolymers .……………………. .

355

13.3.J

Peptides   and     Proteins  ………………..

356

13.3.1.l

Sequence     Analysis     ………………….

357

13.3.1.2

ThTehree-Dimensional Structure of Proteins ..

358

13.3.2

Polynucleotides ………………….. .

360

13.3.3

Oligosaccharides and Polysaccharides……. .

362

13.4

Bibliography for Chapter 13 .…………. .

366

14

NMR Spectroscopy in Biochemistry and Medicine

369

14.1

Introduction

369

14.2

Elucidating Reaction Pathways in Biochemistry

370

14.2.1

Syntheses using Singly 13C-Labeled Precursors

370

14.2.l.l

Low  Levels  of  13C  Enrichment  ………….

370

14.2.1.2

High Levels of 13C Enrichment

372

14.2.2

Syntheses using Doubly 13C-Labeled Precursors

373

14.3

High-Resolution in vivo NMR Spectroscopy

375

14.3.1

The Problem and its Solution

375

14.3.2

3 tp NMR Experiments

376

14.3.3

1 H and 13C NMR Experiments

379

14.4

Magnetic Resonance Tomography

380

14.4.1

Basic Principles and Experimental Considerations

380

14.4.2

Applications

386

14.4.2.1

Magnetic Resonance Tomography

386

14.4.2.2

Magnetic Resonance Spectroscopy, 1H MRS

390

14.5

Bibliography for Chapter 14

392

Subject Index

395

Index of Compounds

403

آموزش ویدیویی باز کردن فایل های زیپ در گوشی های اندرویدی

نقد و بررسی‌ها

هنوز بررسی‌ای ثبت نشده است.

اولین کسی باشید که دیدگاهی می نویسد “کتاب Basic One- and Two-Dimensional NMR Spectroscopy انگلیسی”
سبد خرید
ورود

حساب کاربری ندارید؟

نسخه اصلی کتاب طیف سنجی فریبولین (1)

کتاب Basic One- and Two-Dimensional NMR Spectroscopy انگلیسی

59,000 تومان
خانه
0 مورد سبد خرید
حساب من